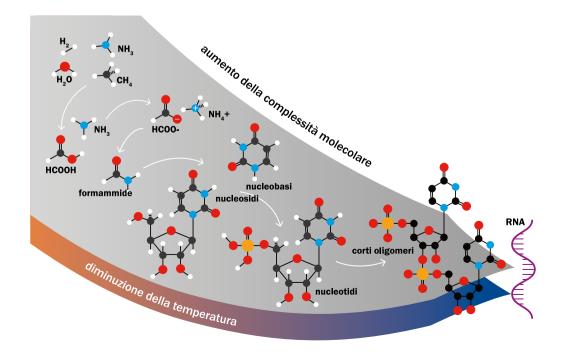
[as] intersezioni

La vita emergente.


di Ernesto di Mauro

biologo molecolare

L'interpretazione di che cosa si intende per origine della vita richiede prima di tutto di definire che cosa sia la vita ("Ogni esegesi richiede una filologia", nelle parole di Mircea Eliade). Ci potremo poi porre la domanda: esiste una vera origine? Una definizione di vita cui spesso si fa riferimento è quella fornita dalla Nasa: la vita è un sistema chimico che si autosostiene ed è soggetto a evoluzione darwiniana. Questa definizione non incontra grosse obiezioni ma non regge a una analisi formale. La vita non si autosostiene, poiché assorbe ed elabora energia dall'esterno; non è un sistema, ma un processo; e definire un processo non per quello che è ma perché può evolvere è una contraddizione formale. Un'analisi strutturalistica, basata sulla ricorrenza dei termini e dei concetti in 123 definizioni, fatta da Edward Trifonov, porta alla seguente meta-definizione: la vita è autoriproduzione con variazioni. Questa meta-definizione non ha un valore assoluto ma è una completa analisi di cosa la scienza ritenga essere

la natura intima della materia vivente. Una sua caratteristica è la generalità; si può considerare applicabile non solo alla vita terrestre ma a ogni forma di vita che l'immaginazione possa concepire, come la vita extraterrestre, forme di chimica alternativa, modelli di computer, forme astratte. Essa suggerisce una base unica comune: è vita tutto ciò che copia se stesso e cambia.

Le entità viventi, come le concepiamo nella nostra corrente visione "terrocentrica" e minimalista, sono un insieme di reazioni chimiche coordinate, selezionate nel tempo e integrate con reazioni preesistenti. Ciò pone la vita nel dominio dei processi caratterizzati da proprietà emergenti, cioè da proprietà che non erano presenti prima che il sistema raggiungesse un dato livello di complessità. La vita è dunque complessità auto-generata basata su informazione che riproduce se stessa. Alla luce di tali considerazioni si può riflettere in modo coerente sul problema della sua origine.

a.

Generazione dei primi
oligonucleotidi sulla Terra.
L'aumento della complessità
molecolare da molecole con
un atomo di carbonio e uno di
azoto fino a molecole di Rna è
un processo spontaneo.

Esiste uno schema chimico nel quale sia possibile seguire in modo filologico l'emersione di questo speciale tipo di complessità dai suoi inizi? È questo schema chimico veramente unitario, o non dobbiamo piuttosto ricercare la convergenza di flussi multipli e indipendenti di molecole latrici di informazione? Esistono altre nicchie termodinamiche (essendo la vita un fenomeno non all'equilibrio) al di fuori del pianeta Terra, nelle quali sia possibile rintracciare schemi chimici biogenici simili? Sulla Terra, gli organismi viventi sono l'insieme di un "fenotipo" (i sistemi metabolici che raccolgono ed elaborano energia, fatti di proteine, lipidi, zuccheri) e di un "genotipo" (le informazioni che vengono trasmesse attraverso le generazioni), che è costituito di Dna e determina il fenotipo. Numeri altissimi di unità di informazione (i "nucleotidi") sono messi in fila in ordine perfettamente (geneticamente) definito. Un computer procede con scelte successive in base a informazioni espresse da due "lettere", 0 e 1. Il Dna è organizzato in modo simile: le sue "lettere" di base sono due strutture chimiche distinte (nucleotidi purinici e nucleotidi pirimidinici), allineate lungo un filamento polimerico. Per aumentare la propria ricchezza di informazione il codice binario del Dna a un certo momento della propria evoluzione si è sdoppiato e sia le purine che le pirimidine sono diventate due: A (adenina) e G (guanina) sono le purine, C (citosina) e T

(timina) sono le pirimidine. Il filamento di Dna si avvolge e si sostiene intorno a un filamento speculare: il Dna è una doppia elica, e questa specularità è alla base della sua capacità di autoriproduzione.

I processi chimici che hanno generato questo sistema sono determinabili a ritroso. Data la nostra composizione, non possiamo non derivare dalla chimica dell'acido cianidrico. e da quella dei suoi primi derivati: acido formico e, soprattutto, formammide. Gli spazi interstellari contengono elevate quantità di queste sostanze, in nubi le cui dimensioni sono dell'ordine delle migliaia di anni luce. Le reazioni che dai composti primordiali portano ai costituenti di base del vivente (aminoacidi, basi nucleiche, acidi carbossilici, catene alifatiche) sono ormai in gran parte note. Sono anche chiari i principi per i quali queste molecole, generate spontaneamente in presenza di diffusi e adatti catalizzatori, e senza particolari richieste energetiche, possono polimerizzare creando il successivo livello di complessità chimica (le proprietà emergenti di cui sopra). Ne deriva che il filo di reazioni che unisce queste prime molecole biogeniche autogenerate dagli organismi complessi quali noi siamo non conosce interruzioni; e che la vita non ha avuto un vero inizio, poiché non è possibile definire un momento lungo questo filo in cui sia possibile dire: da qui in poi è vita, prima è non-vita.

In un pionieristico
esperimento condotto
nel 1952 Stanley Miller
(nella foto) dimostrò che
sotto l'azione di scariche
elettriche i composti presenti
nell'atmosfera primordiale
della Terra potevano interagire
con l'acqua producendo
molecole organiche
(amminoacidi).